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A solution satisfying the usual radiation conditions is found to the problem of an 
internal wave propagating towards a corner. It is found that, far from the 
corner, and the characteristic emanating from the corner, the solution is 
asymptotically equivalent to the solution found by plane wave reflexions from 
an infinite wall. The present solution shows that, by imposing the radiation 
condition, a singularity predicted by the ray theory along the corner characteristic 
is absent. A further singularity in the present solution along the same charac- 
teristic is shown to be due to an inability of the usual linear internal wave equa- 
tions to fully describe the motion. The solution is for restricted corner angles. 

1. Introduction 
In  attempting to find the effect upon an internal wave propagating towards a 

sloping beach, it is of interest to examine the influence of the corner. Sandstrom 
(1966) has examined problems similar to this using purely ray methods, which 
led to anomalous energy flux radiations. In  particular, when the solution obtained 
in this manner is expanded in terms of eigensolutions, it is found that there are 
modes present which are transporting energy in a direction opposite to that 
implied by the usual radiation condition. Wunsch (1969) has examined the 
eigensolutions, in a wedge, of the equations governing the propagation of 
internal waves. However, from this work, the effects of the corner on a propagat- 
ing plane wave are not evident. 

Here we examine this problem by supposing the corner is in an infinite medium. 
A certain form of the solution is assumed, so that only modes radiating energy in 
the appropriate direction are present. This results in an integral equation, which 
is solved and properties of the resulting flow fields are examined. Unfortunately, 
the solution is for restricted angles of the corner. 

2. Equations of motion 

disturbances in a stable, density stratified, incompressible, inviscid fluid are 
The linear equations governing the two-dimensional propagation of small 
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where x and y are the horizontal and vertical co-ordinates. The quantities 
po, pl,  p l ,  u, v are, respectively, the equilibrium density, perturbation density, 
perturbation pressure, horizontal and vertical velocities. 

If the Boussinesq approximation is made, and the stream function $ is 
introduced, such that 

u = -- al% al% 
a Y '  

O = -  ax ' 

where 

is the Brunt-Vaisala frequency. 
If the motion is periodic, so that 

( 5 )  becomes 

Internal waves exist if u2 < N 2 .  We assume this to be the case, and also that 
N 2  is constant, i.e. the equilibrium density stratification is exponential. Under 
these conditions, plane wa,ve solutions to (6) exist in the form, 

3. The ray solution 
It has been shown by Mowbray & Rarity (1967) that, for internal waves of the 

type given by (7), the group velocity is at  right angles to the phase velocity, with 
the x component of both velocities in the same direction. 

incident upon an infinite barrier situated at  x = ay, with ] a /  < y .  This wave is 
introducing energy from x = + 00, along the characteristics y = ( x / y )  = constant, 
and will be reflected. Using methods similar to geometrical optics (see Phillips 
1966, p. 176), the reflected wave is 
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Consider now the region bounded below by y = 0, and to the left by y = x/a,  
with (a1 < y (see figure 1). The eigensolutions or modes satisfying (6) in a half 
plane with $ = 0 on y = 0 are 

$*k(x,y) = sinkye*ik(x/u) ( I c  > 0). (8) 

For these solutions the sign in e**kklz/y) determines the direction of energy propaga- 
tion. For e+ik(x'y) the energy is propagating to the right, and for e-ik(x/y) to the left. 
The problem to be posed is: given an incident wave, 

e1(x,  y) = sinhye-ih@/y) ( A  > 0 ) ,  

introducing energy from x = + co onto the barrier at x = a y ,  what is the resulting 
reflected solution '1 

x=uy A Y 

Y = -xlr 
\ , Y=xlY 

0 \ 
\ / 
\ / 
\ / 
\ / 

I I I I I I 17-1 I I I I I I I I  I I I I I l l  * 
FIGURE 1. The geometry of the corner under consideration showing the characteristics 

originating a t  the corner. 

A possible solution can be found by separating the incident wave into its two 
plane wave components, and reflecting these from the various walls using the 
method similar to geometrical optics discussed above. This shall be termed the 
ray solution, and is given by 

where 

The ray solution may be expanded in terms of the eigensolutions (8) to  yield 

ray solution = 

The integration path I? is along the entire real axis indented above the point 
r = c-l and below the point 7 = c. That this integral is the ray solution is 
easily verified using contour integration. Thus, the ray solution consists of 
modes exporting energy to x = +oo, corresponding above to r > 0, and modes 
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introducing energy from x = + co, corresponding to T < 0. But the incident mode 
is introducing energy from x = +co, and we are seeking the reflected solution. 
On physical grounds the reflected solution cannot also be introducing energy 
from the far field. Hence, the ray solution does not satisfy the radiation condition, 
and cannot be accepted as the solution to the physical problem. 

However, there seems no reason to reject our method of reflecting a plane wave 
from an infinite wall. The ray solution is found using this method, and therefore 
it would seem that deviations from this solution could only be caused by the 
presence of the corner. The effects of the corner should be felt near the corner 
and, because of the hyperbolic nature of the equations, near the characteristic 
emanating from the corner. Thus the assertion, which we shall show to hold, is 
that the ray solution is asymptotically valid at  large distances from both the 
corner and the characteristic, y = x / y ,  originating at  the corner. 

4. A solution satisfying the radiation condition 
In  3 4 we look for a solution to the problem posed in § 3 such that the radiation 

condition is satisfied, i.e. the reflected solution consists only of modes exporting 
energy to x = +m. 

Given an incident mode, 

$I (x, y) = sin h y  e-i"x/v) h > 0, 

we can write the total stream function, @T, as 

$T = $ I + $ &  (9) 

where $E is the reflected solution. The reflected solution will automatically 
satisfy the radiation condition if it is represented by 

The boundary condition, imposed by the ba,rrier situated at  x = ay (1.1 < y ) ,  is 
$T (ay, y) = 0 for all y k 0. Hence, from (9) we obtain the integral equation 

ihay 
0 = sin h y  exp ( - T)  + JOm sin ky exp (7) dk 

for the unknown amplitude function A(k) /k .  
Because the kernel of (I l ) ,  i.e. sin ky eiakyly, is a function of the product Icy it is 

convenient to take a Mellin transform with respect toy. This yields the transform 
A(s )  of A ( k )  which, upon simplification, is 

where 

- sin [ & { s ( ~  + iK)}] As 
sin[i{s(n - iK))] ' A(s)  = - 

K = In ~ =lnc. (& T 3 
In taking the transform of (ll), the transforms of the known functions, viz. 

functions of the type eiuY, are valid in a restricted range of the transform variable. 
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For the variable in (12) this range of validity is - 1 < Res c 0. When IKI is 
large enough, 2 (s) has poles in this region of s. At present we shall assume that 
Res lies to the right of these poles, so that the inversion path may be taken as the 
imaginary axis. In  this case, 

+ i W  

A ( k )  = LS B(s)k-Sds. 
2nz -dW 

The integral is non-convergent at the end points, and has to be treated in a 
generalized sense. This is most easily achieved by transforming the path of 
integration to the real axis and then subtracting the singularity at  infinity. The 
resulting integrals yield (see appendix) : 

A(k)  = L[cothv(X+lni )  2ni +cothv((K-lni)] 

1 V ( k / h ) 2 q 9  - c-2q 
ni [(k/h)2” - c-2q [(k/h)” - c2”] 

= --[ 
- fr[J(K + In k/h) + 6(K - In klh)], 

where v = n/(n- iK) .  Note 0 < Rev < 1. 

It follows from (10) that the reflected solution is 

m ~ ” - l ( c 2 v  - c-2v) 

(k2” - c”) (k2” - c-”) 

- $ sin hcy exp {ihcxly) - 4 sin hc-ly exp {ihc-l(x/y)}, 

where the singular integral is a Cauchy principal value. In  the preceding work 
extensive use has been made of Erdelyi et al. (1954), from which the Mellin trans- 
form pairs were taken. 

The true nature of the solution is not conveyed by (13). The amplitude function 
has singularities which, as they stand, are not easily interpretable. To overcome 
this, the singularity in the integral may be subtracted in a suitable manner. With 
a little manipulation the solution is expressible as 

@ R ( ~ ,  y) = ray solution 

dk,  (14) 
sin hky sin hk(x/y) 

( k + c )  ( k + c - l )  

n v = -  Y-a 
y+a’ K = l n c ,  m-iK‘  

The subtraction of the singularity is evident from the fist integral in (14). 
All the integrands are now absolutely integrable. It was shown earlier that the 

c = - -  where 
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ray solution does not satisfy the radiation condition and hence it should be 
noted that part of the second integral in (14), namely the part, 

dk,  
(c sin hky exp { - ihk(x/y)}  

( k + c )  ( k + c - 1 )  
-~ 

cancels those modes present in the ra.y solution which do not satisfy this 
condition. 

It is possible to express the solution in another form by deforming the path of 
integration in (13). If we introduce the characteristic co-ordinates, 

< = y + - ,  It’ q=?J--  X 

Y Y’ 
so that 0 6 < < co, and -co < 7 < oc) in the region of interest, t,hen the total 
solution may be written as 

$T = ray solution + incident wave 

- 
\ m  k 2 v - - 1 ( ~ 3 ~  - c-V) e-k% 

dk 
2nU 0 (k2V + C 3 U )  ( k 2 Y  + c-V) 

5. Asymptotic expansions of the solution 
In $ 5  we shall find the asymptotic behaviour of the flow in various regions. 
For large values of the characteristic co-ordinates < and 7, (15) readily yields, 

using standard expansion techniques, 

q?T = ray solution + incident wave 
- y(c2V - c-2V c - ~  c~ sgn 71 

277 

Hence the solution obtained here (i.e. the solution satisfying the radia- 
tion condition) is asymptotically equivalent to the ray solution at large 
distances from the origin outside any sector fully containing the charactmeristic 

Levey & Mahony (1968) have demonstrated a method of obtaining asymptotic 
expansions of Fourier integrals over the semi-infinite range valid for small values 
of the argument. This method involves splitting the integral into two parts, the 
finite and infinite parts. By adapting this method to the integrals in (15) it is 
found, for small values of A6 and h y ,  that the contribution from the finite part of 
the integrals consists of terms like (A<)” and (An-)” (n = 0,1 , 2, . . .), which exactly 

q = y-(x/y) = 0. 
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cancel the corresponding terms in the Taylor series expansion of the incident 
wave and the ray solution. The contribution from the infinite part of the 
integmls then gives rise to the asymptotic behaviour 

as and 9 + 0. 
It is evident from (17) that when Re v < 4, i.e. IKl > 7r, the velocity in the 

reflected solution becomes infinite as the characteristic is approached. This 
occurs when the modulus of the slope of the barrier away from the vertical, viz. 
la/ ,  is greater than ytanh &( N 0.917~). 

It can be shown that this singularity is due to a failure of the linear equations 
employed here to completely describe the flow field, and that to first order it is 
admissible. Only a brief outline will be given here. 

If we retain the Boussinesq approximation and use a perturbation scheme in 
E ,  a small parameter governing the supposed infinitesimal incoming wave, so that 
the dimensionalised stream function is given by 

where 
full non-linearized equations shows that the terms in this expansion are 

is the first-order solution we have found, then a detailed analysis of the 

= O(lh712”), 

$‘(’) = O(lhqi2Y-l lhql + 0. 
? p 3 )  = O((h?jl”-2). : ))I 

This, with the expansion (18) for $, shows that the perturbation scheme is no 
longer asymptotic for small E when 

O( E I A?/ I ZY) = 0 (€2 I h q 1 2 V - l ) ,  

or lh9l = O ( 4 .  

Hence the asymptotic expansion is not uniformly valid near the characteristic 
7 = 0, and this region should be depleted by an inner layer of width O(s/h). It 
must be shown that this layer does not act as a source of energy, momentum or 
mass for the remaining flow field. This can be done by applying the non-linearized 
global conservation laws to a region of width O(e/h) enclosing the entire charac- 
teristic 7 = 0, and examining the time-averaged flux into this region. It is found 
that these fluxes are of smaller order in E than those implied by the linear equa- 
tions. Hence, to the accuracy of the linear equations which are being employed 
here, the singularity does not act as a source or sink ofenergy, momentum or 
mass, and is therefore acceptable. 
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6.  Discussion 
In calculating the amplitude function, the inversion path was taken to be the 

imaginary axis. That this should be the case can be seen by examining the other 
possibilities. From (12)  it  is seen that A(s )  has singularities at  the zeros of 

9 

i.e. at  

These poles, if included, give rise to the eigensolutions in a wedge discussed by 
Wunsch (1969). They are of the form, 

These solutions vanish on the boundaries. That none of them can be added to the 
solution obtained is easily verified by considering their behavionr in various 
regions. Obviously, the solutions for n < 0 cannot be included, for then we would 
have an infinite discontinuity in the stream function at  p = 0, which is physically 
unacceptable. The eigensolution for n = 1, on the other hand, is just such that it 
cancels out the most singular terms in the expansion (17) for small 171 and 5. 
However, if we allow this cancellation, then the stream function becomes infinite 
in the far field. But the asymptotic expansion is still invalid at distances O(e) 
from the singular characteristic, and now, when the conservation laws arc 
considered on a global scale, they are found not to  hold. The solution is un- 
acceptable. The singularity is worse for higher values of n, and hence none of the 
eigensolutions can be included. 

It is of interest to note that, apart from constant multiples, the first correction 
t o  the ray solution in the far field is the eigensolution corresponding to n = - 1 , 
and that the expansion near the corner consists of the eigensolutions corre- 
sponding to n positive. 

The asymptotic expansions found in 9 5 do not show the behaviour of the flow 
for intermediate values of the co-ordinates. To obtain this explicitly in particular 
cases, expression (15) has been used to evaluate the total velocity numerically a t  
certain positions. Figures 2 (a) and 2 ( b )  give the velocity V on the beach as a 
function of the scaled vertical height with beach slopes corresponding to 

a/y = - 0.5 and a/y = - 0.95, 

while figure 3 gives, in the case a /y  = - 0.5, the value of ( l /h )  (a+,/aq), which is 
part of the velocity tangential to the singular characteristic = 0. In each 
case, the velocity predicted by the ray theory is included for comparison, 
and it is noted that, a t  distances of approximately one quarter of a wavelength 
or more from the singular characteristic, the actual solution is close to the ray 
solution. Referring to figure 3, we see that the velocity tangential to the singular 
characteristic in the ray solution has a discontinuity, while the solution we have 
obtained by imposing the radiation condition tends to smooth out this singularity. 
Figure 2 (b )  has been included to illustrate the manner in which the velocity be- 
comes infinite as the corner is approached when la/yl > tanh &. Physically, this 

~n=exp(-innv)52n”-exp(in~rvsgnp)1p12”” ( n =  i- 1, i - 2 ,  ...). 
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FIGURE 2. The total velocity V on the beach slope as a function of the scaled vertical 
height hy, (a)  in the case a/y = - 0.5, ( b )  in the case a/y = - 0.95. The dashed line gives 
the corresponding velocity predicted by the ray theory. 
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singularity is probably not observable, because, for these slopes, the entire linear 
theory may have broken down, or, if not, then the above solution is not valid for 
values of hy less than O(B),  and in this region a smoothing process probably 
takesplace. 

I Imaginary part 

+ -2.0 

FIGURE 3. The graph, near '1 = 0, of l/A(at,b/aq), which is part of the velocity tangential 
to the singular characteristic q = 0. a/y = - 0.8. Tho clashed line gives the corresponding 
value predicted by the ray theory. 

In conclusion, it can be stated that the effect of a corner on a propagating 
plane wave is that the wave is reflected according to the simple ray theory, 
except near the corner, where the imposition of the radiation condition smooths 
out the singularity predicted by this theory. 

This work is to be part of a Ph.D. Thesis to be submitted to the University of 
Western Australia. I gratefully acknowledge assistance and encouragement given 
to me by my supervisor, Mr D. G. Hurley, and by Professor J. J. Mahony. Part of 
this work wa.s undertaken while the author was the recipient of a Gledden Fellow- 
ship awarded by the University of Wcstern Australia. 

Appendix 
Here we evaluate 

+in, sin .[i(n + iK)] 
- ,La  sin s[$(n- iK)] A(lc) = -- 

It is convenient to change variables so that the path of integration is the real 
axis. By employing the evenness and oddness of the integrand, A ( k )  reduces to 

sinhs(g(n++iK))cos(Sln(L/h)) 
sinhs{+(n- iK)) A ( k )  = -~ as. 
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The integrand is not integrable a t  the upper limit and this singularity must be 
subtracted to give - 

sin s{K +In (klh)} + sins {K - In (k /h)}  
exp (S(T - iR)} - 1 

ds 

The fist integral in this expression is tabulated in standard tables of Fourier 
sine transforms, while the second integral requires the generalized 01 Ceshro 
summed integrals: 

1 
sin ExdE = -. 

10-  X 
fip cos kxdk = nS(x), 

The resulting A ( k )  is 

A(k)  = ~ [ c o t h v { K + l n ( k / h ) } + c o t h u { K - I n ( k / h ) } ]  
2ni 

- &[S(K + 111 (E/h)} + S ( K  - In ( k / A ) } ]  

where 
7r 
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